Unbounded operators having self‐adjoint, subnormal, or hyponormal powers
نویسندگان
چکیده
Abstract We show that if a densely defined closable operator A is such the resolvent set of 2 nonempty, then necessarily closed. This result extended to case polynomial . also generalize recent by Sebestyén–Tarcsay concerning converse J. von Neumann. Other interesting consequences are given. One them proof T quasinormal (unbounded) normal for some , normal. Hence closed subnormal itself hyponormal (nonnecessarily bounded) and self‐adjoint coprime numbers p q must be self‐adjoint.
منابع مشابه
Existence of Non-subnormal Polynomially Hyponormal Operators
In 1950, P. R. Halmos, motivated in part by the successful development of the theory of normal operators, introduced the notions of subnormality and hyponormality for (bounded) Hilbert space operators. An operator T is subnormal if it is the restriction of a normal operator to an invariant subspace; T is hyponormal if T*T > TT*. It is a simple matrix calculation to verify that subnormality impl...
متن کاملLifting strong commutants of unbounded subnormal operators
Various theorems on lifting strong commutants of unbounded sub-normal (as well as formally subnormal) operators are proved. It is shown that the strong symmetric commutant of a closed symmetric operator S lifts to the strong commutant of some tight selfadjoint extension of S. Strong symmetric commutants of orthogonal sums of subnormal operators are investigated. Examples of (unbounded) irreduci...
متن کاملThe Lifting Problem for Hyponormal Pairs of Commuting Subnormal Operators
We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of RC, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality. Our tools include the use of 2-variable weighted...
متن کاملJointly Hyponormal Pairs of Commuting Subnormal Operators Need Not Be Jointly Subnormal
We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of R. Curto, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality.
متن کاملFractional powers of hyponormal operators of Putnam type
We are concerned with fractional powers of the so-called hyponormal operators of Putnam type. Under some suitable assumptions it is shown that if A, B are closed hyponormal linear operators of Putnam type acting on a complex Hilbert space H, then D((A+B)α) = D(Aα)∩D(Bα) = D((A+B)∗α) for each α ∈ (0,1). As an application, a large class of the Schrödinger’s operator with a complex potential Q ∈ L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2023
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202100390